Multiple structural transitions in interacting networks
نویسندگان
چکیده
Many real-world systems can be modeled as interconnected multilayer networks, namely a set of networks interacting with each other. Here we present a perturbative approach to study the properties of a general class of interconnected networks as inter-network interactions are established. We reveal multiple structural transitions for the algebraic connectivity of such systems, between regimes in which each network layer keeps its independent identity or drives diffusive processes over the whole system, thus generalizing previous results reporting a single transition point. Furthermore we show that, at first order in perturbation theory, the growth of the algebraic connectivity of each layer depends only on the degree configuration of the interaction network (projected on the respective Fiedler vector), and not on the actual interaction topology. Our findings can have important implications in the design of robust interconnected networked system, particularly in the presence of network layers whose integrity is more crucial for the functioning of the entire system. We finally show results of perturbation theory applied to the adjacency matrix of the interconnected network, which can be useful to characterize percolation processes on such systems.
منابع مشابه
Multiple tipping points and optimal repairing in interacting networks
Systems composed of many interacting dynamical networks-such as the human body with its biological networks or the global economic network consisting of regional clusters-often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread and recovery. Here we develop a model for such systems and find a very rich phase diagram that be...
متن کاملCritical phenomena in complex networks
The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researchers have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, an...
متن کاملGCMC Glauber dynamics study for structural transitions in YBCOx (0<x<1), HTc system
We have chosen an Ising ASYNNNI (ASYmmetric Next Nearest Neighbor Interaction) model under a grand canonical regime to investigate structural phase transition from a high symmetric tetragonal (Tet) to a low symmetric orthorhombic in YBa2Cu3O6+x , 0<x<1, HTc system. Ordering process for absorbed oxygens from an external gas bath into the basal plane of the layered system is studied by Monte C...
متن کاملAbrupt structural transitions involving functionally optimal networks
We show analytically that abrupt structural transitions can arise in functionally optimal networks, driven by small changes in the level of transport congestion. Our findings are based on an exactly solvable model system which mimics a variety of biological and social networks. Our results offer an explanation as to why such diverse sets of network structures arise in Nature (e.g. fungi) under ...
متن کاملAn Automaton Based Framework for Analysis and Control of Flexible Manufacturing Systems
Development and maintenance of control software has emerged as one of the most difficult problems associated with building Flexible Manufacturing Systems (FMS). FMS controllers , potentially the most flexible FMS components, are characterized by their inflexibility. To support configuration flexibility of FMS controllers, this work proposes a modular hierarchical control structure which combine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.09897 شماره
صفحات -
تاریخ انتشار 2018